Molecular and biochemical characterization of dNOS: a Drosophila Ca2+/calmodulin-dependent nitric oxide synthase.

نویسندگان

  • M Regulski
  • T Tully
چکیده

Nitric oxide (NO) is an intercellular messenger involved with various aspects of mammalian physiology ranging from vasodilation and macrophage cytotoxicity to neuronal transmission. NO is synthesized from L-arginine by NO synthase (NOS). Here, we report the cloning of a Drosophila NOS gene, dNOS, located at cytological position 32B. The dNOS cDNA encodes a protein of 152 kDa, with 43% amino acid sequence identity to rat neuronal NOS. Like mammalian NOSs, DNOS protein contains putative binding sites for calmodulin, FMN, FAD, and NADPH. DNOS activity is Ca2+/calmodulin dependent when expressed in cell culture. An alternative RNA splicing pattern also exists for dNOS, which is identical to that for vertebrate neuronal NOS. These structural and functional observations demonstrate remarkable conservation of NOS between vertebrates and invertebrates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and biochemical characterization of dNOS: A Drosophila

Nitric oxide (NO) is an intercellular messenger involved with various aspects of mammalian physiology ranging from vasodilation and macrophage cytotoxicity to neuronal transmission. NO is synthesized from L-arginine by NO synthase (NOS). Here, we report the cloning of a Drosophila NOS gene, dNOS, located at cytological position 32B. The dNOS cDNA encodes a protein of 152 kDa, with 43% amino aci...

متن کامل

Reductase domain of Drosophila melanogaster nitric-oxide synthase: redox transformations, regulation, and similarity to mammalian homologues.

The nitric oxide synthase of Drosophila melanogaster (dNOS) participates in essential developmental and behavioral aspects of the fruit fly, but little is known about dNOS catalysis and regulation. To address this, we expressed a construct comprising the dNOS reductase domain and its adjacent calmodulin (CaM) binding site (dNOSr) and characterized the protein regarding its catalytic, kinetic, a...

متن کامل

Regulation of multimers via truncated isoforms: a novel mechanism to control nitric-oxide signaling.

Nitric oxide (NO) is an essential regulator of Drosophila development and physiology. We describe a novel mode of regulation of NO synthase (NOS) function that uses endogenously produced truncated protein isoforms of Drosophila NOS (DNOS). These isoforms inhibit NOS enzymatic activity in vitro and in vivo, reflecting their ability to form complexes with the full-length DNOS protein (DNOS1). Tru...

متن کامل

Calmodulin is a subunit of nitric oxide synthase from macrophages

A central issue in nitric oxide (NO) research is to understand how NO can act in some settings as a servoregulator and in others as a cytotoxin. To answer this, we have sought a molecular basis for the differential regulation of the two known types of NO synthase (NOS). Constitutive NOS's in endothelium and neurons are activated by agonist-induced elevation of Ca2+ and resultant binding of calm...

متن کامل

Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells.

Endothelins (ET) produce endothelium-dependent vasodilation through nitric oxide (NO) synthesis. The present study was designed to elucidate the cellular mechanism by which ET induces synthesis and release of endothelium-derived NO by cultured bovine endothelial cells (EC). Binding studies revealed that bovine EC membrane had the binding sites of a novel agonist (BQ3020) for non-isopeptide-sele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 92 20  شماره 

صفحات  -

تاریخ انتشار 1995